
NASA Contractor Report 201707

ICASE Report No. 97-30

10 AS E
ANNIVERSARY

OPUS: A COORDINATION LANGUAGE FOR
MULTIDISCIPLINARY APPLICATIONS

Barbara Chapman, Matthew Haines,
Piyush Mehrotra, Hans Zima,
John Van Rosendale

NASA Contract No. NAS1-19480
June 1997

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA 23681-0001

Operated by Universities Space Research Association

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-0001

Approved far pukHc rolw»«;

-AA

CqXTAln*W8P%ömB «

19970721 014
i,«.

Opus: A Coordination Language for Multidisciplinary
Applications*

Barbara Chapman1 Matthew Haines2 Piyush Mehrotra3

Hans Zima1 John Van Rosendale3

institute for Software Technology and Parallel Systems
University of Vienna

Liechtensteinstrasse 22, A-1090, Vienna, Austria
{barbara,zima}@par.univie.ac.at

2 Computer Science Department
University of Wyoming

Laramie, WY 82071-3682
hainesOcs.uwyo.edu

institute for Computer Applications in Science and Engineering
NASA Langley Research Center, Mail Stop 403

Hampton, VA 23681-0001
{pm,j vr}@icase.edu

Abstract

Data parallel languages, such as High Performance Fortran, can be successfully applied to a wide
range of numerical applications. However, many advanced scientific and engineering applications
are multidisciplinary and heterogeneous in nature, and thus do not fit well into the data parallel
paradigm. In this paper we present Opus, a language designed to fill this gap. The central concept
of Opus is a mechanism called ShareD Abstractions (SDA). An SDA can be used as a computation
server, i.e., a locus of computational activity, or as a data repository for sharing data between
asynchronous tasks. SDAs can be internally data parallel, providing support for the integration
of data and task parallelism as well as nested task parallelism. They can thus be used to express
multidisciplinary applications in a natural and efficient way. In this paper we describe the features

of the language through a series of examples and give an overview of the runtime support required
to implement these concepts in parallel and distributed environments.

"This research was supported by the National Aeronautics and Space Administration under NASA Contract No.
NAS1-19480, while the authors were in residence at ICASE, NASA Langley Research Center, Hampton, VA 23681.

1 Introduction

With the arrival of teraflop architectures, the complexity of simulations being tackled by scientists
and engineers is increasing exponentially. Many of these simulations are of a complex, "multi-
disciplinary" nature, constructed by pasting together modules from a variety of related scientific
disciplines. This raises a host of new software integration issues. While data parallel languages,
like HPF [21], are well-suited to exploiting the parallelism in each module [10], they offer little
support for integration and also do not exploit the coarse grained parallelism that multidisciplinary
applications frequently provide.

One example of a multidisciplinary application is environmental simulation. One might, for
example, have a sequence of models, such as a) a swamp biology model for the Everglades, b) a
hydrothermal model for the Gulf stream, c) a mesoscale climate model and d) a solar radiation
model. The goal is then to interconnect these models into a multidisciplinary model subsuming the
original models together with their various couplings.

Another example is multidisciplinary optimization (MDO). Designing a modern aircraft, for
example, requires a wide variety of interacting disciplines: aerodynamics, propulsion, structural
analysis, controls, and so forth. An optimal engineering design is necessarily an admixture of
suboptimal designs in each discipline. The essential goal is to correctly couple a set of complex
scientific and engineering programs from different disciplines, into a coherent whole capable of
effective multidisciplinary optimization.

Implementing multidisciplinary applications raises a number of complex programming issues.
One is that the constituent programs being glued together are typically written by different groups,
using different data structures and approaches. Moreover, the mix of programs involved typically
changes over time. In the environmental simulation, for example, one might find it necessary to
add a model of airborne particle transport to correctly predict solar heating. Similarly, in MDO of
an aircraft, one might need to replace a simple linear flow solver by a more sophisticated Euler or
Navier-Stokes code.

In such large-scale programming projects, statically forming a "task graph" and coupling tasks
via "message plumbing" is virtually unworkable. A much more flexible software environment ap-
pears to be critical. At the same time, one wants to effectively exploit the parallelism both within
and across the separate discipline models. Exploiting the coarse-grained parallelism in multidisci-
plinary applications requires facilities for spawning and synchronizing collections of tasks, each of
which might contain internal data parallelism.

We have recently designed a coordination language, called Opus, targeted towards such appli-
cations. It provides a software layer on top of data parallel languages, such as HPF, designed to
address both the "programming in the large" issues and the parallel performance issues arising in
complex multidisciplinary applications.

The heart of Opus is a new mechanism, called ShareD Abstraction (SDA). SDAs borrow from
object-oriented systems in that they encapsulate data and the methods that act on the data, and
from monitors in shared memory languages in that an active method has exclusive access to the
data of an SDA.

Tasks, i.e., asynchronously executing autonomous activities, are instantiated in Opus by cre-
ating instances of SDAs and invoking the associated methods. Different SDAs represent distinct

address spaces, hence Opus tasks do not directly share data. Instead, interaction between tasks is
accomplished by invoking methods in other SDAs. Thus, a set of tasks may share a pool of common
data by creating an SDA of the appropriate type and making the data SDA available to all tasks
in the set. Using SDAs and their associated synchronization facilities also allows the formulation of
a range of coordination strategies for these tasks. This set of concepts forms a powerful tool which
can be used for the hierarchical structuring of a complex body of code and a concise formulation
of the associated coordination and control mechanisms.

The runtime system supporting Opus utilizes lightweight, user-level threads that are capable of
supporting both intra- and inter-processor communication primitives in the form of shared memory,

message-passing, and remote service requests [20]. This allows the independently executing SDA
tasks to freely share the underlying parallel resources.

The remainder of the paper is organized as follows: The next section discusses the language
extensions defined in Opus and their use. Section 3 presents a couple of multidisciplinary applica-

tions, using the concepts introduced in Section 2. Section 4 outlines the runtime support necessary
for implementing these extensions. This is followed by a section on related work and a brief set of

conclusions.

2 The Opus Language

There are a number of constraints which must be satisfied by any general framework which supports
the coupling of multiple programs into complex multidisciplinary codes. In particular, we have
identified the following requirements:

• The separate programs should be "encapsulated" into modules in a way that respects their
separate name spaces.

• Coupling between modules should be at the highest level (as opposed to having message-
passing constructs throughout the code).

• Both task-level parallelism between modules, and data parallelism within each module should
be expressible.

• Flexible and general synchronization mechanisms should be provided to allow the programmer
maximal freedom in exploitation of task-level parallelism.

The first two of these requirements are motivated by software-engineering considerations. Their
purpose is to simplify the combination of component modules, enable the definition of clear inter-
faces between modules, and allow modules to be intermixed without rewriting their internal code.
This is in contrast to message-passing models, which combine modules with no clear interface

definition.
The other two requirements are needed for performance. Multidisciplinary codes are among

the largest and most computationally intensive codes, so that any language designed for such
applications must have the potential to fully exploit highly parallel architectures.

To fulfill these requirements, Opus introduces a new construct called a ShareD Abstraction
(SDA). This concept supports the development of MDO codes by providing data and method

encapsulation. SDAs can be used as computation servers as well as shared data repositories. We
use the well-developed HPF facilities for data parallelism within each SDA, while borrowing ideas
from operating systems for inter-module communication and task-level parallelism.

In this section, we describe the most important constructs of Opus and illustrate them by
applying them to the standard producer-consumer problem. A simple meteorological coordination
problem and a more challenging example - taken from the domain of aircraft design - will be
discussed in the next section.

2.1 The Features of Opus

Opus introduces a small set of features for defining and using SDA objects and accessing SDA
data. It provides language constructs to define SDA types, declare SDA variables, create, initial-
ize, terminate, and save SDA objects, as well as activate SDA methods both synchronously and
asynchronously. The syntax borrows heavily from Fortran 90.

We summarize the way in which these features are used to build an Opus application below.
A full description of the language features can be found in [24]. An SDA type in Opus specifies
an object structure, containing data along with the methods (procedures) which manipulate this
data. An SDA object (which we usually simply refer to as an SDA) is generated by creating an
instance of an SDA type. The creation of an SDA involves allocation of resources on which the SDA
will execute, the allocation of data structures in memory and any initializations that are necessary
to establish a well-defined initial state. The lifetime of an SDA is the time interval between its
creation and its termination. During this interval, the SDA exists and can be accessed via method
calls. SDA variables are handles through which SDAs are accessed from within a program.

There are two ways of invoking a method of an SDA: synchronously, where the caller is
blocked until control returns, or asynchronously, by a non-blocking call. An asynchronous method
execution may be associated with an event, which can be used for status inquiries and synchro-
nization. No two method executions belonging to the same SDA can execute in parallel; as a
consequence each method has exclusive access to the data of its SDA. A method may have an asso-
ciated condition clause, specifying a logical expression, which guards the method's activations.

An SDA can be saved by copying it to external storage, thus generating an external SDA,
which is identified by a unique external name. External SDAs are persistent, having an a priori
unlimited lifetime. Saving an SDA thus makes it accessible for later reuse, by loading an external
SDA into memory.

Each SDA is associated with a unique (SDA) task, which is the locus of all control activity
related to the SDA. The SDA task operates on the resources allocated to the SDA, provides an
address space for the SDA's data, and manages the execution of calls to the SDA's methods. The
execution of an Opus program can be thought of as a system of SDA tasks in which a task executes
a method of its SDA in response to a request from another SDA.

2.2 The Producer-Consumer Problem

We introduce the syntax and semantics of the Opus language by developing an Opus solution
to the standard producer-consumer problem. This simple problem, in which a set of producers
generate data which are processed by a set of consumers, is also the basis for a number of real-

world applications. Our version creates a system in which each individual producer and consumer

operates independently. Synchronization between them is provided by controlling their access to a

bounded FIFO buffer.

To do this, the first step is to define an SDA type which encapsulates the data structures

required to implement the bounded buffer along with the access methods which permit producers

to write to the buffer and consumers to read from it.

SDA TYPE buffer-type (size)

INTEGER :: size

REAL :: fifo(0:size-l)

INTEGER, READ-ONLY

INTEGER :: px=0

INTEGER :: cx=0

count = 0 / number of full elements in FIFO

! producer index

! consumer index

CONTAINS

/ method part

END buffer-type

The above fragment shows the data structure created to define a buffer which may hold up to size

data items of type REAL. Specification of the value of size is deferred until the actual creation of an

SDA (see below). The variable count keeps track of the current number of elements in the buffer,

while px and ex point to the current index positions for producers and consumers respectively.

In contrast to Fortran modules, the internal variables of an SDA type are by default private,

i.e., are accessible only from the methods associated with the SDA. The keyword PUBLIC can be

used to change this default for the whole SDA or to control the accessibility of individual variables.

Opus extends Fortran by supporting the attribute READ-ONLY, which allows SDA variables, such

as count above, to be accessed but not modified from outside.

Next, access methods for reading from and writing to the buffer have to be defined. The

producers may write data to the buffer only if the buffer is not full, while consumers may read data

only if the buffer is not empty. Opus enables conditional execution of a method by permitting a

condition clause, containing a side-effect free logical expression, to be associated with a method.

The condition is evaluated when the method is invoked, and the method can only be activated

if the result is true. If it is false, the method activation request is enqueued until the condition

evaluates to true. This can happen as a result of another method call that changes variables on

which the condition depends.

Our formulation defines two methods: subroutines get and put for reading from and writing to

the buffer respectively. These are shown below:

SUBROUTINE put(x) WHEN (count .LT. size) / condition tests assertion: buffer not full

REAL, INTENT(IN) :: x

fifo(px) = x / Put x into first empty buffer element

px = MOD(px+l,size)

count = count + 1

END

SUBROUTINE get(x) WHEN (count .GT. 0) / condition tests assertion: buffer not empty
REAL, INTENT(OUT) :: x

x = fifo(cx) / Read next full buffer element
ex = MOD (cx+1,size)
count = count - 1

END

The condition clauses control access to the buffer, allowing put methods to be executed only
when the buffer is not full and get methods to executed only when the buffer is not empty. If
we combine these methods with the data declarations defined above, the interface between the
producer and consumer tasks is fully specified.

One of the critical features of SDAs is the atomicity of method executions. In order to avoid
incoherent states of the data associated with any given SDA, methods are executed as atomic
operations. That is, any executing method has complete and sole access to all the internal data
structures of the SDA. Thus, the get and put methods above can access and modify shared variables,
e.g., fifo and count, without interference from other activations of the methods.

The dummy arguments of an SDA type specification are all of intent IN and therefore passed
in by value. Methods are arbitrary procedures, and may have arguments of any intent, which are
passed with copy-in/copy-out semantics.

The producer and consumer tasks must now be asynchronously activated and linked with the
SDA in such a way that they are able to write and read the buffer, respectively. This is implemented
as follows. First, an SDA variable, buffer, of the SDA type bufferJype is declared as shown below:

INTEGER buffersize
SDA (buffer _type) buffer

READ *, buffersize
CALL buffer%CREATE(buffersize)

CREATE is an implicit method which is called to create the SDA object to be associated with
the variable buffer. The variable buffersize is passed in as the actual argument which is associated
with the formal argument size and is used to allocate the internal data structures of the SDA.
CREAreallocates and initializes the SDA object. The user may augment the system initialization
by defining an INIT method which is implicitly called after the call to CREATE. Opus provides
other methods which are implicitly declared for all SDA types: SAVE, LOAD, and TERMINATE.

SAVE permits the saving of the internal state of an SDA to a named external object, while
LOAD allows the creation of an SDA object based on an external object. SAVE and LOAD provide
the minimum language support required for dealing with persistent SDAs. For convenient use of
this mechanism in real applications several extensions are desirable. We are currently studying
additional language features focusing on partial saving, the relaxation of the type conformity re-
quirements in LOAD, and input/output, in particular using smart files [18] for external storage of
the data.

In general, the lifetime of an SDA object extends from the time it is created to the time that
the execution leaves the scoping unit in which the SDA declaration was originally processed. At

this time the SDA is implicitly terminated. The TERMINATE method can be called to explicitly

terminate an SDA and free its associated storage.
Note also that the language provides facilities to specify system resources at the time of ini-

tialization of the object either through the CREATE or LOAD methods (see next section for some

examples).
Once the SDA object has been created, its public data can be accessed and the associated

methods called using a syntax similar to that used for derived types in Fortran. Thus, for example,
the consumers can invoke the get method for the SDA buffer as follows to access the next data
element.

CALL buffer%get(A)

The above statement designates a synchronous method activation which will block the

caller until the method call returns.
In order to support concurrent activity, Opus also provides asynchronous method activation

in which the caller is not blocked by the method call. For example, in the code below, a spawn

statement is used to invoke the method get asynchronously.

EVENT E

E = SPAWN buffer%get(A)
/ Do other work.

WAIT(E)

The spawn statement returns an event which is assigned to the event variable E. The calling unit can
continue its computation and use the event variable in a wait statement, as shown above, to wait
for the completion of the associated method call. This allows the caller and the invoked method
to execute in parallel, in this case overlapping computation with "getting" data elements from the
buffer.

A nonblocking alternative to the wait statement, TEST (E), allows the caller to test for the
completion of an asynchronous method invocation. It returns the current completion state.

As with SDA methods, the spawn statement can also be used with generic Fortran subroutines
to generate concurrent activity. Thus, in the full producer-consumer code, as shown in Figure 1,
np copies of the subroutine produce and nc copies of the subroutine consume are spawned as
asynchronously executing tasks. Each is passed the SDA variable buffer which they use as a shared
resource for communicating values. Note that we have omitted the code for terminating these tasks.

3 Multidisciplinary Applications Using Opus

Multidisciplinary applications, including the important subclass of multidisciplinary optimization
(MDO) problems, are commonly formed by combining data parallel units from various disciplines
to create a single application. With the increase in the size of computing systems available and
the improved access to them, development of such applications, and the complexity of the coupling
between the individual components is steadily increasing. Below we introduce two examples. The

PROGRAM ConsumerJProducer
INTEGER np, nc, buffersize
SDA(buffer_type) buffer

READ (np,nc,buffersize)
CALL buffer%CREATE(buffersize)

DO i= 1, np
SPAWN produce(buffer, ...)

END DO
DO i= 1, nc

SPAWN consume (buffer, ...)
END DO

END

'.Spawn producers

.'Spawn consumers

SDA TYPE buffer_type(size)
INTEGER :: size
REAL :: fifo(0:size-l)
INTEGER, READ-ONLY :: count=0
INTEGER :: px=0, cx=0

CONTAINS
SUBROUTINE put(x) WHEN (count XT. size)

REAL, INTENT(IN) :: x
fifo(px) = x; px = MOD(px+l,size); count = count + 1

END

SUBROUTINE get(x) WHEN (count .GT. 0)
REAL, INTENT(OUT) :: x
x = fifo(cx); ex = MOD(cx-fl,size); count = count - 1

END
END buffer_type

SUBROUTINE produce(b, ...)
SDA (buffer-type) b

DO WHILE (.TRUE.)
/ produce a data item A

CALL b%put(A)
END DO

END produce

SUBROUTINE consume(b,
SDA(buffer.type) b

DO WHILE (.TRUE.)
CALL b%get(A)
/ consume A

END DO
END consume

Figure 1: Producer/Consumer Problem Using Opus

first of these, taken from meteorology, has a simple and well-defined interaction between its two

component modules. The next example is a simplification of an MDO application for aircraft design

with rather more complex interaction patterns.

3.1 Opus for Data Parallel Applications

One situation in which the kind of interaction described in the producer-consumer program might

occur in practice is the coupling of a global numerical weather prediction (NWP) model with a

limited area forecast model. In this case, the boundary areas of the limited area model are refreshed

by the interpolation of results from the global model at time steps corresponding to fixed intervals

over the time period of the prediction. We use this very simple coupling example to consider the

data parallel requirements of an Opus application.

We assume that the global NWP program global and the local NWP program local have been

independently developed and that they are available as distinct HPF applications. A simple data

interface is required for their coupling.

The program global will write the data set corresponding to the boundary areas of the limited

area model to an SDA at the appropriate intervals, from which it will be read in by local. In order

to maintain accuracy in the limited area computation, it is important that local receives the data

sets from global in their chronological order and that all of them be processed. The amount of data

being transferred dictates that only a small number of data sets be stored at any time; here, we

assume that only one such data set is to be saved in the SDA for reading by local.

The following code fragment shows part of the definition of the SDA type shared^metdata which

is used with a series of methods to read and write a number of different fields of meteorological

data. We show just a few variables here: in practice, there are likely to be on the order of half

a dozen different quantities. HPF directives are used to distribute the arrays by blocks to the

processors on which the SDA is executed.

SDA TYPE shared_metdata(size)

!HPF$ PROCESSORS P(number_of_processors()) '.HPF directive specifing the processor set

INTEGER :: size

/ data fields used to save boundary values:

REAL :: temp(size)

REAL :: xvelo (size)

!HPF$ DISTRIBUTE (BLOCK) ONTO P:: temp, xvelo / HPF directive to distribute

! data by blocks across the processors

LOGICAL :: tempmarker = .FALSE. / variable used to indicate whether unread

! data is stored in the SDA

CONTAINS
SUBROUTINE puttemp(restemp) WHEN (tempmarker .EQ. .FALSE.)

/ puttemp stores global temperatures in the SDA array temp

REAL, INTENT(IN) :: restemp(size)

!HPF$ DISTRIBUTE (BLOCK) :: restemp

temp = restemp
tempmarker = .TRUE.

END

SUBROUTINE gettemp(boundtemp) WHEN (tempmarker .EQ. .TRUE.)
/ gettemp reads global temperatures from the SDA array temp

REAL, INTENT(OUT) :: boundtemp(size)
!HPF$ DISTRIBUTE (BLOCK) :: boundtemp

boundtemp = temp

tempmarker = .FALSE.
END

END shared _metdata

The next step is to create an SDA of the above type and spawn the local and global codes which
would use the SDA to transfer data. This is shown in the code fragment below:

!HPF$ PROCESSORS R(32)
SDA(shared_metdata) boundary

CALL boundary%CREATE(insize) ON (PROCESSORS R(l:16))

SPAWN global(boundary, ...) ON (PROCESSORS R(17:32))
SPAWN local(boundary, ...) ON (PROCESSORS R(l:16))

In this coordination application, the two methods are asynchronously invoked on two distinct
sets of processors of the available computing system to run the weather codes (these may well be
on different computers in practice). An HPF directive has been used to declare the processors
involved; it specifies both the number of processors and gives them a global name. This is then
referred to in the method calls which create the SDA and asynchronously spawn the global and
local codes. Thus the user can ensure that the two applications run on different sets of processors
and that an appropriate set of processors is allocated for each code. In the above code, a decision
has been made to locate the data produced by global on the same processors as the code, local,
which will read them. HPF notation has also been used to distribute the data associated with the
SDA. We may assume that the specification of this distribution enables the reading of data to be
performed locally when the method gettemp is invoked.

In practice, a non-trivial filter will be required to transfer data between two such models: not
only will the grid points have different distances, the models may well use different coordinate
systems. We do not consider this aspect here.

3.2 MDO for Aircraft Design

In this subsection we present a short description of the multidisciplinary design of an aircraft and
then discuss how one version could be encoded using the Opus language constructs. The overall
goal of the application is to optimize the design of an aircraft relative to some goal or "objective

function," such as minimization of gross weight. This is done subject to constraints such as specified

range and payload. The design cycle starts with these constraints and goals, a base geometry and

initial values for a set of design variables, such as sweep angle of the wing and thrust of the engines.

Then, in each cycle, an analysis phase analyzes the current configuration of the aircraft, as specified

by the design variables, to produce a set of output variables, such as lift and drag. The optimizer

then evaluates the objective function for this configuration to produce new values of the design

variables. Effective optimizers are Newton-like methods which require "sensitivity derivatives," the

derivatives of the output variables with respect to the design variables. This optimization cycle

continues until the process converges to a final "optimized" configuration of the aircraft.

The analysis phase consists of the various discipline codes, such as aerodynamic analysis, struc-

tural analysis, controls, etc., interacting with each other to analyze the current definition of the

aircraft. Some disciplines, such as aerodynamic or structural analysis, exhibit a large degree of

internal parallelism and thus require substantial physical resources for execution. However, other

disciplines are generally simpler and should most likely be executed sequentially. The amount of

data exchanged during the analysis phase is dependent on the disciplines involved and ranges from

a few bytes to millions of bytes. Sometimes, this data needs to be "massaged," or filtered, before it

can be used. For example, pressures produced at the aerodynamic grid points by the flow analysis

code have to be integrated to produce forces at the structural grid points for structural analysis.

The interactions between the discipline codes can take different forms depending on the problem

at hand and the target environment. In a sequential environment, the various discipline codes are

generally executed as a pipeline. In a simple parallel variant, multiple versions of the analysis

pipeline can be executed on slightly perturbed values of the design variables in order to obtain the

required derivatives using finite-differences. In more complex parallel versions, such as the one we

describe here, the discipline codes execute asynchronously, with data being exchanged at various

points in the code, such as at the boundaries of the internal optimization cycles. For this latter

approach, the data exchanges must be synchronized to ensure that consistency is maintained.

3.2.1 Opus Code

We now describe a version of the above application using Opus in which the codes in the analysis

phase execute in parallel. The analysis phase has been simplified to the simultaneous optimization

of the aerodynamic and structural design of an aircraft configuration. Though a realistic multi-

disciplinary optimization of a full aircraft configuration would require a number of other discipline

codes, such as controls, performance analysis, propulsion, etc., we present this version for the sake

of brevity.

The structure of the program, as expressed in Opus, is shown in Figure 2, where the SDAs

representing computational activities are represented by rectangles and the SDAs representing

data repositories are represented by ovals. The Optimizer is the main task and coordinates the

execution of the entire MDO application.

As shown in Figure 3, the Optimizer creates the following SDAs: the data repositories Surface-

Geom for sharing geometry and flow data between the two computational tasks, and Sensitivities

for storing the sensitivity derivatives, and the computational tasks FeSolver for structural analysis

of the aircraft configuration, and FlowSolver for aerodynamic analysis. Since the tasks FeSolver

and FlowSolver use the other two SDAs to transfer data, the latter are passed in as arguments

10

*• Control Flow
-*• Data Flow

Processor

FeSolver

Optimizer

r^
^_
FlowSolver

Figure 2: Data flow in a simple MDO application for aircraft design

PROGRAM Optimizer
SDA(FeSolverSDA) FeSolver
SDA(FlowSolverSDA) FlowSolver
SDA(SGeomSDA) SurfaceGeom
SDA(SensSDA) Sensitivities

EVENT e
TYPE(surface) geom

/ - read input arguments and create SDAs
CALL SurfaceGeom%CREATE(...) ON(MACHINE="ABC", PROCESSORS=4)
CALL Sensitivities%CREATE(...) ON(MACHINE="ABC", PROCESSORS=4)
CALL FeSolver%CREATE(SurfaceGeom, Sensitivities,) &

ON(MACHINE="XYZ", PROCESSORS=4)
CALL FlowSolver%CREATE(SurfaceGeom, Sensitivities,) k

ON(MACHINE="XYZ", PROCESSORS=8)
/ - initialize geometry

geom = GenBaseGeom(...)

/ - optimization loop
converged = .FALSE.
DO WHILE (.NOT converged)

SPAWN SurfaceGeom%PutBase(geom)

e = SPAWN FeSolver%Analyze(...)
CALL FlowSolver%Analyze(...)
WAIT(e)

e = SPAWN FeSolver%Gradient(...)
CALL FlowSolver%Gradient(...)
WAIT(e)
converged = Sensitivities%converged(...)
IF (.NOT converged) geom = ImproveGeom(geom)

END DO

/ - save SDAs if necessary
! - kill all SDAs

END

Figure 3: Main program: Optimizer

11

as the former are being created. The on clauses associated with the create statements specify the
resources to be used for the SDAs as shown in the code fragment from Figure 3 reproduced below:

/ - read input arguments and create SDAs
CALL SurfaceGeom%CREATE(...) ON (MACHINE="ABC'\ PROCESSORS = 4)
CALL Sensitivities%CREATE(...) ON (MACHINE="ABC", PROCESSORS = 4)
CALL FeSolver%CREATE(...) ON (MACHINE="XYZ", PROCESSORS = 4)
CALL FlowSolver%CREATE(...) ON (MACHINE="XYZ", PROCESSORS = 8)

All four SDAs are internally data parallel and use multiple processors for their executions. The
two computation SDAs, FeSolver and FlowSolver are allocated on the machine "XYZ" and use
four and eight processors respectively. On the other hand, the machine "ABC" is designated as

the data server and the two SDAs SurfaceGeom and Sensitivities use four processors each on it.
These processor allocations match up with HPF processor and distribution directives specified in
the respective SDA type definitions. For example, since the SDA SurfaceGeom is allocated on
four processors, the processor array P declared in its type definition (see SDA type SGeomSDA as
shown in Figure 4) will be instantiated as an array of four processors. That is, for the SDA instance
SurfaceGeom, the HPF function number.of .processors () will return four. As indicated before, the
data within the SDA can now be distributed using the full power of the HPF mapping directives.

The Optimizer controls the outer optimization loop while the FlowSolver and FeSolver handle
the inner optimization cycle for a combined aeroelastic analysis of a given geometry. The Optimizer
initiates execution of the inner cycle by storing the initial geometry in the SurfaceGeom SDA using
the PutBase method. PutBase, as shown in Figure 4, stores the geometry in the variable base,
initializes the variable deflected, and sets the logical variable DeflectFull to true. Based on this
geometry, it also generates a finite element model, FeModel, to be used by the FeSolver task and
an initial flow solution, FlowSoln, for the FlowSolver task. The Optimizer then calls the analysis
methods in the FlowSolver and FeSolver tasks. Note since the former is activated asynchronously,

the two analysis routines are executed in parallel.
The Analyze method of the FeSolver task, shown in Figure 5, uses the GetFeModel method to

obtain the finite element model generated on the basis of the current geometry. Similarly, it uses the
GetSurfForces method to obtain the surface forces generated from the current flow solution. These
two data items are used to compute the deflection of the aircraft configuration. The new deflected
geometry is then put back into SurfaceGeom. Similarly, the FlowSolver task (not shown here)
acquires the current geometry (using the GetDeflected method) and an initial flow solution (using
the GetFlowSoln method) and produces a new flow solution which it puts back into SurfaceGeom.

The inner aeroelastic optimization cycle continues until the deflections are within a specified
tolerance limit. At each step of the cycle, the FeSolver uses forces based on the current flow solution
to produce new deformations, while the FlowSolver uses the deflected geometry and the previous
flow solution to produce a new solution. Note that the logical variables and the condition clauses
in the SurfaceGeom SDA are set up to synchronize the parallel tasks. For example, the logical
variable DeflectFull is used so that the old deflected geometry cannot be replaced by a new one

until the old one has been accessed.
After the inner cycle has converged, the Optimizer activates the Gradient methods of the dis-

cipline tasks to generate the sensitivity derivatives with respect to the different design variables.

12

This data is stored in the Sensitivities SDA, not shown here, by the discipline tasks. Based on this
data and the objective function, the Optimizer decides whether to terminate the program or to
produce a new base geometry which is then put in SurfaceGeom to start a new round of the inner
cycle. Once an optimal configuration of the aircraft has been achieved, the SDA data can be saved
and the SDAs terminated.

4 Opus Runtime Support

In the previous two sections we have presented features of Opus and examples showing how these
features can be used to encode interacting asynchronous data parallel tasks. In this section we
describe the runtime system required to support these features.

The Opus runtime system consist of two layers (see Figure 6):

• a language-specific layer, providing the functionality for managing SDAs and their interaction
via method calls, and

• a language-independent layer, which provides support for thread-based data parallelism in
parallel distributed environments.

We discuss first the thread-based layer and then describe the implementation of method invo-
cation, including the handling of distributed arguments in the Opus runtime system.

4.1 Lightweight Threads

As described in the previous sections, SDAs can be configured either as computation servers or as
data servers. In general, the computation server tasks and the data servers will utilize the same
(or overlapping) physical resources. Thus, any given processor in the system might be responsible
for the simultaneous execution of multiple, independent SDAs. Execution of these SDAs could be
implemented on Unix-based systems by mapping each unit to a process. However, this process-
based approach has several drawbacks, including the inability to control scheduling decisions for the
SDA methods, the inability to share addressing spaces between SDAs, and costly context switching
between SDAs. In light of these disadvantages, our runtime system utilizes lightweight, user-level
threads to represent the parallelism within and among SDAs. This decision is consistent with most
other runtime systems supporting parallel or concurrent programming languages [4, 7, 14].

A lightweight, user-level thread is a unit of computation with minimal context that executes
within the domain of a kernel-level entity, such as a Unix process or Mach kernel thread. Lightweight
threads are becoming increasingly useful in supporting language implementations for both parallel
and sequential machines by providing a level of concurrency within a kernel-level process.

The language-independent layer of the OPUS runtime system is based on Chant. Chant provides
both a standardized interface for thread operations (as specified by the POSIX thread standard [25])
and communication among threads using either point-to-point primitives (such as those defined in
the MPI standard [23]) or remote service requests. Chant also supports data parallel groups of
threads (called ropes) for executing collective operations, such as broadcast and reductions. A
description of Chant, and its current status, can be found in [17, 19].

13

The Opus runtime system is primarily concerned with the management of SDAs and their
interaction via method calls. The underlying HPF runtime system will deal with issues of data
parallelism and distribution. In the initial design, we have concentrated on the interaction of
SDAs through method calls (namely method invocation and argument handling), and have taken
a simplified approach to resource management. We presume that all the required resources are
statically allocated and the appropriate code is invoked where necessary. We will later extend the
design of the runtime system to support dynamic acquisition of new resources.

The interaction between SDAs requires runtime support for both method invocation and method
argument handling. We now explore these issues in further detail.

4.2 SDA Method Invocation

The semantics of SDAs places two restrictions on method invocation:

• each method invocation has exclusive access to the SDA data (i.e., only one method for a

given SDA can be active at any one time), and

• execution of each method is guarded by a condition clause, which must evaluate to true before

the method code can be executed.

An SDA method call can be either synchronous or asynchronous. A synchronous method call
will suspend the calling program until the SDA method returns; an asynchronous method invocation
will allow the caller to continue execution and test for method termination with an event variable.

We can view an SDA as being comprised of two components: a control structure which executes
the SDA methods in accordance with the stated restrictions, and a set of SDA data structures. To
enable proper execution of SDAs, each SDA method is compiled into three functions:

1. The method code. This function embodies the method code as specified by the programmer.
It uses a generic method call interface that permits the invocation of all SDA method calls

in a uniform manner.

2. The condition function. This is a boolean function that evaluates the condition clause that
may be associated with an SDA method. The condition clause must be locally evaluated to

ensure that race conditions do not occur.

3. The method interface. This is a stub function that provides the method's public interface to
the calling units and is used to access the SDA method code from another program unit.

Since all SDAs are servers, either for data or computation, each instance of an SDA is represented
by a server loop (as depicted in Figure 7) which waits for messages from the method interfaces of
other units and takes appropriate action as specified by the message. The SDA instance incorporates
a data structure that includes pointers to the condition and method functions for each method along
with a queue of outstanding method invocation requests.

The algorithm in Figure 7 depicts the main loop of an SDA server. On receiving a message from a
method interface routine, the SDA creates a new execution record including a unique identification
for the request. This record is sent back to the caller as acknowledgment. The SDA gathers
any input arguments using non-blocking receives (so as not to impose an artificial ordering on the

14

incoming messages) and enqueues the execution record in the appropriate list. The SDA then selects
the next method request which is ready for execution. A method request is ready for execution if
all its arguments have been received and the associated condition is true. After execution of this
method request, the results, if any, are sent back to the caller. A completion signal is also sent back
to the caller and the execution record is dequeued from the method request list. This reevaluation
of condition functions is repeated until no further methods can be executed, at which time the SDA
continues waiting for further method requests.

Figure 8 shows a generic method interface routine used by the calling task to invoke a method.
After the method request is sent, the caller waits for an acknowledgment and then sends the values of
the input arguments to the callee. If the method activation was synchronous, the caller waits for the
results and for the completion signal before returning. If the method activation was asynchronous,
it posts non-blocking receives for the results and the completion signal. The execution record is
returned to be stored as the event associated with the method activation. This allows the caller
to continue execution without the completion of the method call. The event (i.e., the execution
record) can be used later in a wait or test statement to test for the completion of the method call.

4.3 Distributed Argument Handling

In the previous subsection, we described the protocol for invoking methods under the implicit
assumption that both the calling SDA and the called SDA run on a single processor. However,
the language allows both to be distributed; furthermore, the distributions of the actual and the
formal arguments of method calls may not match. Thus, the Opus runtime system must have
a mechanism for redistributing data at method invocation time. To examine the details of our
prototype implementation, let us consider what happens when a distributed task calls a method in
a distributed SDA, referring to the pictorial representation in Figure 9.

If an SDA type is internally distributed, an SDA instance of this type is represented by a rope,
which is a data parallel group of threads spread across the set of processors. One of the threads
is designated the leader thread while the other threads are worker threads. Method invocation
between distributed SDAs then works as follows (the pseudocode for the main loop of the SDA
leader and the workers of a distributed SDA is shown in Figure 10):

1. The leader thread of the rope associated with the caller (the caller rope) sends a method
request message to the leader thread of the rope associated with the called SDA (the callee
rope) (Figure 9.1). Along with other information, this message also contains the distribution
specifications for the actual method arguments.

2. The leader of the callee rope then creates an execution record containing the distribution
specifications of the dummy method arguments and sends it back to the leader of the caller
rope. It also notifies its workers of the method request (Figure 9.2), along with the distribution
specifications of the actual arguments.

3. The leader of the caller rope then informs all its workers of the dummy argument distribution
information it has received. At this point, all threads involved in the method invocation
have the distributions of both the dummy and actual arguments, and can create their own
communication schedules as discussed below (Figure 9.3).

15

4. Once the communication schedules have been computed, the threads of the caller rope send
data messages directly to the appropriate threads of the callee rope (Figure 9.4). The data
is received by these threads through non-blocking receives.

5. The leader of an SDA rope chooses the next ready method to execute and informs all its
workers. The method is executed and all threads of the callee rope send any return messages
back to the threads of the caller rope using the previously computed communication schedule
(Figure 9.5). The leader of the callee rope then sends a completion signal to the leader of the

caller rope.

The leader of the callee rope controls which method request is to be executed next, and thus
sends to its worker threads messages for new method requests or for execution of already queued
requests. In the former case, as shown in Figure 10, the worker threads independtly compute their
communication schedules and post their receives. In the latter case, they execute the method and

send back the results. We currently assume that the condition code is executed solely by the leader
and only uses information which is replicated across the rope and thus can be accesses locally by

the leader.
Determining the communication schedule, i.e., what elements of an array are to be sent or

received from which thread, is a complex task. Several groups have been studying algorithms and
heuristics to determine the most efficient schedule [2, 11, 16, 22, 26, 27, 31]. We have adopted (and
augmented) the finite state machine (FSM) method for local address set calculation developed by
Chatterjee et al. [11] in our current prototype. The FSM method exploits the repeating patterns of
local array indices to determine the elements of a distributed array that each thread owns. Since all
threads can do this calculation simultaneously, there is no gather/scatter operation required. We
have extended this work by creating a second FSM such that, for each local element of the array
yielded by the original FSM, the thread can determine the destination thread it must communicate
with. Each thread in the sender creates a list of elements for each destination thread which is then
aggregated into a single message for each other thread and transmitted. Thus, each destination
thread will receive at most one message from each sending thread. In addition, each receiving thread
can use the same FSM method along with the sender's distribution information to determine from
whom it should receive messages and what the contents will be. Consequently, the messages contain
only raw data, eliminating the overhead of transmitting indices.

We have developed a prototype implementation of the Opus runtime system, which is currently
running on a cluster of workstations using p4 and the Intel Paragon using NX. This implementation
handles distributed arguments in synchronous method calls. A complete description of the system

and some preliminary results can be found in [20].

5 Related Work

Task management has been a topic of research for several decades, particularly in the operating
systems research community. A good survey of the issues can be found in [3]. However, there has
not been much attention given to the mechanisms required for managing control parallel tasks,

which may themselves be data parallel. In this section we discuss some of these approaches.

16

Fortran M [13] extends Fortran 77 with a set of features that support message-passing, ac-
cording to a strictly enforced discipline. Processes - program modules encapsulating data and code
that are executed concurrently - can be interact via channels; each channel establishes a one-to-one
connection between typed ports, essentially representing a message queue*. Communication is per-
formed by sending and receiving from ports. Processes are activated by executing a process block -
a PARBEGIN/PAREND like construct - or by creating multiple instances in a process loop. The
language has constructs for controlling the location of process executions and distributing data
in an HPF-like manner. By imposing a FIFO discipline on message queues and guaranteeing a
sequential semantics for output arguments determinism is enforced.

Fortran M can be used to create and coordinate processes in a clean and structured way. How-
ever, the relatively low level of abstraction associated with the message-passing paradigm, together
with the structure imposed on the use of channels and ports for the sake of achieving determin-
ism sometimes leads to difficulties expressing simple and useful communication structures. Such
examples include producer-consumer problems with multiple producers and consumers accessing a
bounded buffer, or the variants of the readers-writers problem.

Recent work at Argonne and Syracuse [15] integrates HPF with the message passing standard
MPI. In this approach, data parallel HPF tasks may exchange distributed data structures by directly
using calls to MPI communication functions.

The Fx Fortran language extensions developed at CMU [28, 29] include parallel sections that
allow the concurrent activation of subroutines as tasks. Tasks communicate through arguments.
Arguments can be passed to a task at the time of its activation, or received from a task when it
terminates. Each call that activates a task must be accompanied by input and output directives that
specify the shared objects. This provides the compiler with complete information on the required
communication.

Fx is well suited to an environment where tasks need to communicate only at the time of spawn-
ing and termination, and where nested task-parallelism is not required. If tasks must communicate
during their execution, subroutines may have to be split at synchronization points to obtain smaller
program units that fit into this scheme. Moreover, this would clearly induce task-spawning over-
head.

LINDA [1] provides a virtual shared tuple space, to which read and write operations can be
applied. It represents a simple and easily usable parallel programming paradigm. However, LINDA
lacks the modularity that is required for structuring multidisciplinary applications, and does not
allow sufficient control of task execution and resource allocation.

Orca [5] provides an object model similar to SDAs called abstract data types (ADTs). Both
ADTs and SDAs represent abstract data types that can be distributed over a set of processors using
conventional data parallel mapping directives. Both apply operations to their elements using the
owner-computes rule. Aside from implementation issues, the main difference between ADTs and
SDAs is in the "server" nature of the SDA. All SDAs run implicit server loops to handle incoming
requests, and SDA methods can be invoked both synchronously and asynchronously, where the
decision can be made at the call site. This allows SDAs to behave as computation servers as well
as data servers. Orca objects deliberately lack such a server, to allow concurrent read operations
on different copies of an object.

'In addition, many-to-one communication can be expressed.

17

SVM Fortran [6] is a set of extensions for Fortran 77 intended to program shared virtual
memory systems. Among a large number of features, it provides support for fine-grained control
parallelism in a shared memory paradigm along with mechanisms to synchronize and coordinate

these tasks.
Other approaches which provide support for managing task parallelism at a high level include

PVM [30], CC++ [8] and Strand [12]. Most of these approaches do not address the issue of

integrating task and data parallelism.

6 Conclusions and Future Research

Complex scientific applications, such as multidisciplinary optimization, provide opportunities for

exploiting multiple levels of parallelism, but also raise complex programming issues. The coordi-
nation language Opus, presented in this paper, supports the multiple levels of parallelism arising

in multidisciplinary applications, and also provides support for software engineering issues arising
when integrating codes from individual disciplines into a single working application.

A partial implementation of Opus has been built, using the Chant runtime system. Performance
of a simplified multidisciplinary application code has been studied using this implementation. The
cost of a typical SDA method call with distributed arguments appears to be reasonable and our
design scales with the number of processors. Given these preliminary results, a full prototype im-
plementation of Opus has begun. Since Chant runs on a large number of multiprocessor platforms,
this prototype will be widely portable, and should prove useful in a number of important applica-
tions. We also plan to explore the research issues of supporting parallel method calls within the

same SDA and condition evaluation based on distributed data structures.

References

[1] S. Ahuja, N. Carriero, and D. Gelernter. Linda and friends. IEEE Computer, 19:26-34, August

1986.

[2] A. Ancourt, F. Coehlo, F. Irigoin, and R. Keyrell. A linear algebra framework for static HPF
code distribution. In Proc. of the 4th Workshop Compilers for Parallel Computers, Delft, The

Netherlands, December 1993.

[3] G. R. Andrews and F. B. Schneider. Concepts and notations for concurrent programming.

Computing Surveys, 15(l):3-44, March 1983.

[4] G. R. Andrews and R. A. Olsson. The SR Programming Language: Concurrency in Practice.

Benjamin/Cummings, 1993.

[5] H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum. Orca: A Language for Parallel Programming
of Distributed Systems. IEEE Transactions on Soßware Engineering, 18(3):190-205, March

1992.

[6] R. Berrendorf, M. Gerndt, W. Nagel, and J. Prummer. SVM FORTRAN. Technical Report
KFA-ZAM-IB-9322, Research Center Jiilich(KFA), Germany, November 1993.

18

[7] R. Bhoedjang, T. Riihl, R. Hofman, K. Langendoen, H. Bal, and F. Kaashoek. Panda: A
Portable Platform to Support Parallel Programming Languages. Symposium on Experiences
with Distributed and Multiprocessor Systems IV, pages 213-226, September 1993.

[8] K. M. Chandy and C. Kesselman. CC++: A declarative concurrent object-oriented program-
ming notation. Technical Report CS-TR-92-01, California Institute of Technology, 1992.

[9] B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran. Scientific Pro-
gramming, l(l):31-50, 1992.

[10] B. Chapman, P. Mehrotra, and H. Zima. Extending HPF for Advanced Data Parallel Appli-
cations. IEEE Parallel and Distributed Computing, 2(3):59-70, Fall 1994.

[11] S. Chatterjee, J. R. Gilbert, F. J. E. Long, R. Schreiber, and S.-H. Teng. Generating local
addresses and communication sets for data-parallel programs. In Symposium on Principles
and Practice of Parallel Programming, pages 149-158, May 1993.

[12] I. Foster and S. Taylor. Strand: New Concepts in Parallel Programming. Prentice-Hall, En-
glewood Cliffs, NJ, 1990.

[13] I. Foster and K. M. Chandy. Fortran M: A language for modular parallel programming.
Technical Report MCS-P327-0992 Revision 1, Mathematics and Computer Science Division,
Argonne National Laboratory, June 1993.

[14] I. Foster, C. Kesselman, R. Olson, and S. Tuecke. Nexus: An Interoperability Layer for Parallel
and Distributed Computer Systems. Technical Report, Argonne National Labs, 1993.

[15] I. Foster, D. R. Kohr, Jr., R. Krishnaiyer, and A. Choudhary. Double Standards: Bringing task
Parallelism to HPF via the Message Passing Interface. Proc. Supercomputing 96, Pittsburgh,
PA. (to appear).

[16] S. K. S. Gupta, S. D. Kaushik, C.-H. Huang, and P. Sadayappan. On compiling array expres-
sions for efficient execution on distributed memory machines. Technical Report OSU-CISRC-
4/94-TR19, The Ohio State University, Department of Computer and Information Science,
Columbus, OH 43210, March 1994.

[17] M. Haines, P. Mehrotra, and D. Cronk. Ropes: Support for collective operations among
distributed threads. ICASE Report 95-36, Institute for Computer Applications in Science and
Engineering, NASA Langley Research Center, Hampton, VA 23681, May 1995 (to appear in
Scientific Programming).

[18] M. Haines, P. Mehrotra, and J. Van Rosendale. SmartFiles: An 00 approach to data file
interoperability. ICASE Report 95-56, Institute for Computer Applications in Science and
Engineering, NASA Langley Research Center, Hampton, VA 23681, July 1995. To appear in
OOPSLA 95.

[19] M. Haines, D. Cronk, and P. Mehrotra. On the design of Chant: A talking threads package.
In Proceedings of Supercomputing 94, pages 350-359, Washington, D.C., November 1994. Also
appears as ICASE Technical Report 94-25.

19

[20] M. Haines, B. Hess, P. Mehrotra, J. Van Rosendale, and H. Zima. Runtime support for data

parallel tasks. In Frontiers 95, February 1995.

[21] High Performance Fortran Forum. High Performance Fortran Language Specification, Version

1.1, November 1994.

[22] K. Kennedy, N. Nedeljkovic, and A. Sethi. Efficient address generation for block-cyclic dis-
tributions. In Proceedings of the International Conference on Supercomputing, pages 180-184,

Barcelona, Spain, July 1995. ACM Press.

[23] Message Passing Interface Forum. Document for a Standard Message Passing Interface, Version

1.1, June 1995.

[24] Opus Reference Manual, ICASE Interim Report No. 31, 1997 (under preparation).

[25] IEEE. Threads Extension for Portable Operating Systems (Draft 7), February 1992.

[26] S. Ramaswamy and P. Banerjee. Automatic generation of efficient array redistribution routines
for distributed memory multicomputers. Technical Report UILU-ENG-94-2213, CRHC-94-09,

University of Illinois, April 1994.

[27] J. Stichnoth, D. O'Hallaron, and T. Gross. Generating communication for array statements:
Design, implementation and evaluation. Journal of Parallel and Distributed Computing,

21(1):150-159, April 1994.

[28] J. Subhlok and T. Gross. Task parallel programming in Fx. Technical Report CMU-CS-94-112,
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, 1994.

[29] J. Subhlok, J. Stichnoth, D. O'Hallaron, and T. Gross. Exploiting task and data parallelism
on a multicomputer. In Proceedings of the 2nd ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, pages 13-22, San Diego, CA, May 1993.

[30] V. Sunderam. PVM: A framework for parallel distributed computing. Concurrency: Practice

and Experience, 2(4):315-339, December 1990.

[31] A. Thirumalai and J. Ramanujam. HPF Array statements: Communication generation and
optimization. In Proc. 3rd Workshop on Language Compilers, an Runtime Systems for Scalable

Computers, Troy, NY, May 1995.

20

SDA TYPE SGeomSDA(...)
!HPF$ PROCESSORS P(number_of_processorsQ)

TYPE(surface) base, deflected
TYPE(flow) FlowSoln
TYPE(fe) FeModel

!HPF$ DISTRIBUTE base

LOGICAL DeflectFull = .FALSE.
LOGICAL FeFull = FALSE.

CONTAINS
SUBROUTINE PutBase(b)

TYPE(surface), INTENT(IN) :: b
base = b; deflected = b
FeModel = GenFeModel(b, FeModel)
FlowSoln = InitSoln(b)
DeflectFull = .TRUE.
FeFull = .TRUE.

END

SUBROUTINE PutDeflected(d) WHEN (DeflectFull .EQ. .FALSE.
TYPE(surface), INTENT (IN) :: d
deflected = d
DeflectFull = .TRUE.

END

SUBROUTINE GetDeflected(d) WHEN (DeflectFull .EQ. .TRUE.)
TYPE(surface), INTENT(OUT) :: d
d = deflected
DeflectFull = .FALSE.

END

SUBROUTINE GetFeModel(f) WHEN (FeFull .EQ. .TRUE.)

SUBROUTINE GetSurfForces(f)

SUBROUTINE GetFlow(f)

SUBROUTINE PutFlow(f)

LOGICAL FUNCTION within_tol(...)

END SGeomSDA

Figure 4: Surface Geometry SDA

21

SDA TYPE FeSolverSDA(Surf, Sens, ...)
SDA(SGeomSDA) Surf
SDA(SensSDA) Sens

!HPF$ PROCESSORS P(number-of_processors())

CONTAINS
SUBROUTINE Analyze(...)

converged = .FALSE.
CALL Surf%GetFeModel(FeModel)

/ - discipline optimization loop
DO WHILE (.NOT converged)

CALL Surf%GetSurfForces(forces)
CALL fesolve(forces, FeModel, deflect,
CALL Surf%PutDeflected(deflect)
converged = Surf%within_tol(...)

END DO

END

SUBROUTINE Gradient^..)

sens = ...
CALL Sens%PutFeSens(sens)

END
END FeSolve

Figure 5: Finite Element Solver

Opus Language/Compiler

Opus Runtime

Language-Dependent

Language-Independent

Threaded Runtime (Chant)

Figure 6: Runtime layers for SDA support

22

Do forever {

Wait for method request for method m from caller

Create new execution record X

Send X to caller as acknowledgment

Post receives for input arguments from caller
Enqueue X in queue for method m

Repeat

Select next ready method request Y

Execute method Y

Send results to caller

Send completion signal to caller
Dequeue Y

Until no more method requests are ready

Figure 7: Pseudocode for an SDA main loop

Send method request to SDA

Wait for execution record X as acknowledgment
Send actual arguments to callee

If activation_type = asynchronous
Post receives for results

Post receive for completion signal
Return X

else

Wait for results
Wait for completion signal from callee

endif

Figure 8: Pseudocode for a method call interface

23

1
o

o
o

ö

^>r^B Leader

Caller Rope Call ee Rope

Opus Program

1. Caller leader thread sends
method request to callee leader
thread with actual argument dis-
tributions.

O
O

O
i ^

^ -if^m Leader

I
Caller Rope Callee Rope

Opus Program

2. Callee leader thread notifies
its workers and ACKs the request
with dummy argument distribu-
tions.

Leader (^X

^B Leader

Caller Rope Callee Rope

Opus Program

3. Caller leader sends callee dis-
tribution information to all its
workers. All threads in the caller
and callee ropes compute commu-
nication schedules.

Callee Rope

Opus Program

4. Caller threads send data
messages to appropriate callee
threads directly.

Leader Q*^" ̂

^**^^ Leader

 w

Opus Program

5. When method execution has
finished, the callee threads send
any return messages to the caller
threads. This completes the

method call.

Figure 9: Illustration of the method invocation process for distributed SDAs

24

SDA leader:

Do forever {

Wait for method request for method m from caller

including distributions of actual arguments
Create new execution record X

including distributions of formal arguments

Send X to leader thread of caller as acknowledgment
Send X to all workers

Compute communication schedule

Post receives for input arguments from caller
Enqueue X in queue for method m
Repeat

Select next ready execution record Y

Send Y to all workers
Execute method Y

Send results to caller

Send completion signal to leader thread of caller
Dequeue Y

Until no more method requests are ready

}

SDA Workers:

Do forever {

Wait for message from leader

If new method execution record X received

Compute communication schedule

Post receives for input arguments from caller
Enqueue X in queue for method m

else

Execute method X

Send results to caller

Dequeue X
endif

}

Figure 10: Main loops for leader and workers in a distributed SDA

25

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existingdata sources,
gathering and maintaining the data needed, and completingand reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway Suite 1204 Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE OfiVffLeave blank) 2. REPORT DATE

June 1997
3. REPORT TYPE AND DATES COVERED

Contractor Report

4. TITLE AND SUBTITLE

Opus: A Coordination Language for Multidisciplinary Applications

AUTHOR(S)

Barbara Chapman, Matthew Haines,
Piyush Mehrotra, Hans Zima,
John Van Rosendale

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering
Mail Stop 403, NASA Langley Research Center
Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681-0001

5. FUNDING NUMBERS

C NAS1-19480
WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 97-30

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-201707
ICASE Report No. 97-30

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell
Final Report
To appear in Scientific Programming

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 60,61

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
Data parallel languages, such as High Performance Fortran, can be successfully applied to a wide range of
numerical applications. However, many advanced scientific and engineering applications are multidisciplinary and
heterogeneous in nature, and thus do not fit well into the data parallel paradigm. In this paper we present Opus, a
language designed to fill this gap. The central concept of Opus is a mechanism called ShareD Abstractions (SDA).
An SDA can be used as a computation server, i.e., a locus of computational activity, or as a data repository for
sharing data between asynchronous tasks. SDAs can be internally data parallel, providing support for the integration
of data and task parallelism as well as nested task parallelism. They can thus be used to express multidisciplinary
applications in a natural and efficient way. In this paper we describe the features of the language through a series
of examples and give an overview of the runtime support required to implement these concepts in parallel and
distributed environments.

14. SUBJECT TERMS
multidisciplinary applications, language constructs, task and data parallelism, runtime
support

17. SECURITY CLASSIFICATION
OF REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

27

16. PRICE CODE

A03
20. LIMITATION

OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

